SIS
LLO%4 S3100U

e

NOTES FROM MISOSYS

FF

BL

“—rj—'—'F—

. .
. .
. s e
e e s e

« s e

e o s e

CONVCPM

MSPQL .

CONTRIBUTIONS
[

EPILOGUE

NOTES FROM MISOSYS is

................

a publication of MISOSYS, PO Box

l:d

TABLE OF CONTENTS

...............

...............

4848, Alexandria VA

223@3. A1l material is copyright 1983 by MISOSYS and all rights are reserved.

ISSUE 1 -1

NOTES FROM MISOSYS

THE BLURB

This 1is the inaugural issue of our "newsletter". For some time now,
MISOSYS has been working towards publishing information bulletins for our
customers. Coming up with a name for this publication has been a problem. We
don't want to compete with the LSI publication, so "QUARTERLY" is out of the
picture. Besides, we have no idea as to the frequency of this publication.
The term, "newsletter", is sometimes overused to the point of Tloss of its
meaning. Since the purpose of this publication 1is to bring together into one
source, information on new products, hints and kinks (an old HAM term) on our
existing products, patches and whatnot where necessary, and other programming
tidbits, we have settled in on "NOTES FROM MISOSYS®.

This first issue is being mailed via FIRST CLASS in order to ensure that
those of you having moved since registered will still get this issue. Future
mailings will probably be via BULK RATE which does not get forwarded by USPS.
Therefore, if your address is incorrect on the label, please let us know of
your revised address so that our data base may be updated prior to the next
mailing. If you received this issue along with an order, then your
registration of the associated product will get you into our data base.

In mid-April, we released two new products. One is the long-awaited and
most requested product function of the past few years - release III of our
disassembler. DSMBLR III provides the capability of DIRECTLY disassembling an
object-code file (/CMD type). We did not want to stop Jjust there. DSMBLR III
also automatically partitions the output into two or more files of a size
specified by the user. DSMBLR will also prompt to swap destination diskettes
when the destination disk becomes full. The disassembler also accepts a data
file of screening information which tells it to decompose selected regions as
data. It constructs these regions as DW or DB statements as specified
(literals are constructed as strings). This is truly an advanced product and
will set the standard for disassemblers. DSMBLR III is priced at $4@ (+$2
S&H). It will operate under LDOS 5.1 or TRSDOS (model I or III). Okay, you
ask, what about all of us out here already owning a DSMBLR II? If you return
your DSMBLR II cassette when placing an order for DSMBLR III, you will
receive a $10 credit. The trade-in offer expires August 31, 1983.

The second new product is ZSHELL, a command line preprocessor. Inspired
by LC and UNIX, ZSHELL adds additional flexibility to LDOS 5.1.x. You will
have 1/0 redirection of *KI, *DO, and *PR controlled for the duration of a
program’'s execution. No Tlonger do you have to ROUTE, execute, RESET, and use
the output file. A command 1line as simple as "DEVICE >STATUS/TXT" will
automatically place the display output of the device command into the file,
STATUS/TXT. Realize that this now lets you control the *KI input device just
as easily. You also get piping so that "DIR :1 (A,I,S,P) [+ LSCRIPT" pipes
what would have been the printer output into LSCRIPT. Imagine what you would
have had to type to accomplish that feat with standard LDOS commands. You
also get multiple commands on a line. For example, "LIB; DEVICE; DIR; FREE"
can be typed to schedule the execution of all four commands. ZSHELL is priced
at $40 (+$2 S&H).

Effective March 1, we also LOWERED the price of the CON8JZ and MSP-@1

utility packages. Each has been reduced from $5@¢ to $4@. Specifics are
discussed under each packages "notes". We also have available at a special

ISSUE'1 - 2

NOTES FROM MISOSYS

price for a limited time, Volume II of "THE BOOK, ACCESSING THE TRS-8@ ROM".
This book presented an in-depth analysis of device input/output on the Model
I computer. It details keyboard, video, printer, and cassette routines as
well as provides a commented partial disassembly (comments by address). This
book originally sold for $14.95. We have a limited quantity to be sold for $5
(+$1 S&H). Even if you have other books on the Model I, Volume II will be of
benefit by the detailed treatment of its subject matter. Even if you have a
Model III, the textual material will be advantageous. Get your copy while
they last.

By now, you should be aware that LSI was exceedingly busy preparing its
6.9 release of LDOS. The first machine to receive that advanced system was
Tandy's Model 4. Yes, TRSDOS 6.0 (TRSDOS is a trademark of the Tandy Corp.)
is a licensed version of LDOS 6.8. LDOS 6.8 is very different from LDOS 5.1;
however, media format is virtually identical! LDOS 6.0 is 10@% SVC accessible
and operates in Tlow memory (@-3@@@H). Thus, MISOSYS has been busy rewriting
our product line for operation under LDOS 6.8. In order to avoid confusion
with existing products, the 6.8 1line of comparable products have different
names. For instance, the comparable disassembler version III is named
PRO-DUCE III for operation under 6.8. Similarly, the 6.0 comparable EDAS
version IV is entitled, PRO-CREATE. We also have a comparable version of the
partitioned data set utility entitled, PRO-PaDS. We expect to bring up
CMDFILE, CON8@Z, CONVCPM, GRASP, LC, MSP-@1, ZGRAPH, and ZSHELL as time
permits. Some of these other products may already be available by the time
you read this. So, if you are using a machine that is running LDOS 6.# and
are looking for the features in software available in our product line, stay
in close contact with us for availability. Thesewnew 6.0 releases are
separate products. Please do not ask’ for any "update" offers from our
corsarable 5.x products.

EDAS VERSION III

Although we no Tlonger produce this version of the Editor Assembler, we
will still be supporting it for a period of *ime. Some users are having a
problem, depending on which operating system is being used, with pagination
using XREF3 on the model III. The problem stems from Tandy's changeover from
the printer driver paging from @ through 66 to 1 through 67. They apparently
never quite understood zero origin mathematics and the problem preve’ent in
the Model I which attempted to range the printer from @ through 67 lines was
"corrected" in the Model III by restarting the count of lines printed to 1.
XREF3 initializes the counter to @ the first time a printout is requested.
Since succeding pages re-initialize the 1line counter to 1, 67 lines print on
the first page and 66 on succeeding pages. The following patch to XREF3/CMD
should correct this problem. The patch can be installed by whatever means you
have at your disposal to patch CMD programs. Remember, 1if you have no
"zapping" utility, you can assemble the patch as data and use CMDFILE to
append the patch code. The patch shown is for the XREF3/CMD file releasec
11/9/81 or later. Data in brackets "[]" is relative sector and relative byte
for the first byte of the patch.

. Patch to XREF3/CMD dated 11/9/81 or later

At X'5358', change from "32 29 4¢" to "CD C7 5A" [R@@, B87]
At X'5369', change from "42" to "43" [R@®, B98]

ISSUE 1 - 3

NOTES FROM MISOSYS

At X'5AC5', change from “2@ 2D 2¢ 4A 6F 62 2¢ 61" to "21 @D 3C 32 29
49 3D CO" [R@7, BF4]

EDAS VERSION 4.1

Version 4.1 of EDAS was released September 1lst of 1982. This version
runs only under LDOS. Although not documented, EDAS 4.1 uses the Extended
Cursor Mode (ECM) of LDOS. Since ECM was first introduced in LDOS 5.1.1, EDAS
will not function with the 5.8 series. Another problem 1is that folk's
operating their machine remotely, usually cannot generate the ECM character
set. EDAS 4.1 uses the LDOS 5.1.x KFLAG scanner to deal with PAUSE and BREAK.
This is done so that TYPE-AHEAD will function properly. The KFLAG scanner
does not exist in LDOS 5.8 or other operating systems. The *SEARCH facility
in EDAS 4.1 also makes use of a function existing only in LDOS. These are the
primary reasons that EDAS 4.1 works only with LDOS. To help our users that
are trying to operate remotely, we have developed a patch that can be applied
to EDAS 4.1 to have it work without the Extended Cursor Mode - thus allowing
it to function with remote access terminals. The patch is as follows:

. PATCH TO EDAS 4.1 TO INHIBIT ECM
D@@,98=C9; WAS CP

DP@,EA=80; WAS 89

DPB,F6=p8 18 PA; WAS 91 92 94
D@, FC=19; WAS 9@

D@3,C1=19; WAS 94

D@5,02=00; WAS 40

D@6 ,EB=5B; WAS 82

D@6 ,EE=PA; WAS 88

D@7,96=18; WAS 91

D@7 ,9A=p8; WAS 81

D@7 ,AD=5B; WAS 82

D@7,B1=PA; WAS 88

D@7,D9=19; WAS 94

D11,D6=1B; WAS 92

D11,D9=p1; WAS 81

D12,50=p8; WAS 81

" The next series of patches are for various versions of EDAS 4.1. These
patches have already been applied to released disks according to serial
number. Check the serial number of your diskette (located on the diskette
label) and compare to the application date and number identified in the
patch. Apply only those you need. There is no harm in applying any patch to
any EDAS 4.1 diskette. If your EDAS 4.1 diskette is relatively new, you may
not even have to apply a single patch. Consult your LDOS manual under
UTILITIES (PATCH command) for instructions in entering and applying these
patches. If you choose NOT to apply the patches yourself but would rather
return your EDAS 4.1 disk for application by us, there will be a $5 charge.
The patch Tlist starts from EDAS42/FIX since the first fix was applied prior
to the EDAS4 release.

. EDAS42/FIX - @8/3@/82 - installed 820@27-820943 & 820060+

. This fix inhibits KEYIN from accepting the
. ESCAPE character which is only used in line edit.

ISSUE 1 - 4

NOTES FROM MISOSYS

DP2,8F=CD @B 58 FE 92 C§ 18 F8
D@7,93=C6 59
. end of patch

. EDAS43/FIX - $8/3@/82 installed 820027-820043 & 82pP6@+
. This fix corrects the -SL assembly switch option

. for correctly displaying symbols that have

. a dollar sign ($) in positions 2-n

D19,FC=0D 20 @F FE 24 20 @B 3E @2 8@ 85 6F 8C 95 67 18
D1A,@C=D5 7E CD 38 5B 23 1@ F9 CD CB 82

. end of patch

. EDAS44/FIX - 99/@8/82 - installed 820@63+
. This fix corrects the "*PREFIX" assembler command.
. *PREFIX can now be used within a macro to schedule
a change to the macro substitution string.

This fix reduces the # of macro nesting by 1.
DlQ 24=CC; Correct pointers to MACNEST.
D28,77=CC
028,92=CC
D2A,8@=CC
D2A, 96=CC
D2A,8D=9D 57 @1 @7; Correct pointer to restore & length.
D28,8C=@7; Change nest move length to 7
D28,A2=CD B2 81; Add patch to shift one more subst1tut1on
D2B,17=11 9B 57 ED AP C9; byte into current macro area.
. end of patch

. EDAS45/FIX - P9/08/82 - installed 820@71+
This patch inhibits EDAS from accepting null Tlines
read from a GET or SEARCH file with a blowup due
to MODSCAN parsing 256 characters.

D2E,1D=B8 81; At X'84AB' JP to patch

D2B,1D=1A B7 C2 9C 71 C3 95 84; Test line length

. end of patch

. EDAS46/FIX - §9/15/82 - installed 820@77+
. Fixes macro processor not terminating on tab.

D28,D1=0¢ 90 6@ 9P 99 CD C6 81
. end of patch

. EDAS47/FIX - 99/15/82 - installed 82@@77+
. Corrects ABORT option if X command.
D@2,23=CE 59
D@7,34=CE,59
D19,96=ED 5B CE 59 14 2¢

end of patch

. EDAS48/FIX - 10/27/82 - installed 82¢181+
. This fix corrects EDAS47/FIX which corrected the ABORT
. option but caused eject of extra page and title.
Note: the patch supercedes EDAS47/fix
D@Z 23=CE 59
DP2,99=ED 5B CE 59 C9

ISSUE'1 - 5

NOTES FROM MISOSYS

D@7,34=CE 59
D19,96=CD D@ 59 7A B3 28

The next patch does not correct a bug.
up the assembly of

. end of patch

. EDAS49/FIX - 12/18/82 - Roy Soltoff
. This FIX corrects the error handling response if

. KI/DVR is not resident. Patched starting with 820338

099,AB=67 44
D@@,CO=0D
. end of patch

. EDAS41¢/FIX - §1/@84/83 - Roy Soltoff

. This FIX corrects the symbol table addition on the
. statement: LABEL <TAB> ;COMMENT

. Patched starting with 820428

pl2,55=FE 3B C2 63 72 4D C3 28 72

. WAS 00 00 00 00 80 00 00 00 00
D1B,7E=28 @8 C3 54 69 @@ FE 3B 28 DE
.; WAS 20 @4 FE 3B 28 DA FE 3B 28 C5
. end of patch

. EDAS411/FIX - $1/19/83 - Roy Soltoff

. This fix enables EDAS to trap symbols that are
. too long (> 15) when appearing in the

. operand field of a statement.

D12,5E=79 FE 1@ D2 1D 72 AF C3 E9 72
. WAS @0 99 00 00 00 00 09 00 99 00
D14,83=5D 69; WAS E9 72

. end of patch

. EDAS412/FIX - @1/26/83 - Roy Soltoff

. Applied starting with 820428

. This fix corrects nested IFNE - ENDIF constructs
. Two conditionals were not parsed if within

. a conditionally false.

D1B,D9=3@; WAS 2E
. end of patch

. EDAS413/FIX - @2/@8/83 - Roy Soltoff

. Applied starting with 820471

. This fix corrects assemblies where *GET files
. contain source lines of 127 or 128 characters.

D@3,PE=99; WAS 96
D2D,32=78; WAS T7A
D2D,6A=7B; WAS 7D
. end of patch

be recognized by the LC users during the assembly phase.

stored

in the symbol table. EDAS always searches the symbol table

ISSUE1 - 6

MACRO

It enhances EDAS IV by speeding
source code that uses MACROs. A notable improvement would

names are
starting

NOTES FROM MISOSYS

from the most recent entry. Since MACROs are usually entered near the
beginning of a program, EDAS had to constantly search through the bulk of the
table before matching up the MACRO name when a MACRO was invoked. This patch
adds a second pointer which is updated only when a MACRO is added to the
table. The MACRO search wuses this new pointer; thus, MACRO search time is
much shorter. Uniquely, as the length of the symbol table grows, this new
method provides a greater percentage reduction over the unpatched EDAS. The
sieve program discussed later under LC was assembled with a 14% decrease in
assembly time!

. EDAS414/FIX - $4/18/83 - Roy Soltoff

. This patch increases the speed of assemblies
. when MACROs are involved. The greater the

. source files, the greater the speed increase.
. First applied #820614

D12,68=73 23 72 2B ED 42 2B 22 CE 57 C9

. WAS 00 90 00 00 00 09 00 60 00 80 B0
D12,73=22 B4 56 22 CE 57 C9; WAS 00 00 00 00 00 00 00
D17,E2=CD 72 69; WAS 22 B4 56

D1B,94=CE 57; WAS B4 56

D26,4F=CD 67 69; WAS 73 23 72

. End of patch

The most asked question concerning EDAS 4.1 (and asked question refers to
someone suspecting a bug) concerns the display of "“total errors". Now for the
explanation of the “total errors" message. i

The assembler has up to three phases (or passes) when assembling. The
first phase assembles each instruction but provides no output. This phase is
used to generate all addresses of symbolic Tlabels. Note that any forward
reference (referencing a label prior to its definition) results in an error
stroke. Phase 2 is used to provide a listing - this phase can be suppressed
with -NL. Phase 3 generates object code.

In EDAS version 4.1, the "total errors” is shown after either the
listing pass or the object code pass. The error display is NOT suppressed if
you inhibit both phase 2 and phase 3. Thus, the error count you get is the
total number of forward references plus any other assembly errors. You cannot
just "A-NL" and expect to see a proper error total. Perhaps EDAS should have
inhibited the "total error" message if you suppressed both pass 2 and pass 3.
In any event, suppressing both pass 2 and 3 serves no useful purpose. It is a
carryover from early releases of EDAS 3.4 and other assemblers that perform a
second pass on "-NL" to accurately get an error count while suppressing the
display. Kim Watt (of Breeze/QSD) originally suggested that we completely
inhibit the 1listing pass on "-NL" so that Jlarge assemblies (i.e. from
multiple disk files such as an assembly of Super Utility) do not have to
waste time reading files just to get an error total.

One other problem may exist with "large" programs or where a Tlong
editing session loads and deletes a number of files. If you haven't realized
by now, EDAS 4.1 normally uses unnumbered files unless overridden by the user
during the "W" command. Files are automatically numbered during the loading
process. You may find that that a simple "d t,b" may not clear out the text
buffer IF THE STATEMENTS ARE NOT IN LINE NUMBER ORDER! EDAS consecutively
numbers statements on loading. Nothing resets the counter except the

ISSUE 1 -7

NOTES FROM MISOSYS

SHIFT-CLEAR function, a reNumber command, or a fresh entry into EDAS.
Therefore, if you continue to load, edit, and delete files, you may find that
the Tine numbers wrap around past 65529 to @@@@3. It is important to
occasionally reset the line counter by either entering SHIFT-CLEAR with an
empty text buffer or renumbering the buffer when Toaded with text.

We have occasionally been asked why not have a *GET assembler directive
that only operates during the first pass. It would be useful to Tload EQUATE
files. A file containing only EQU statements is often used; however, EDAS
"wastes" time - not to mention disk wear - in reading the EQU files two or
three times per assembly. Well, you can control this function more easily
than EDAS. From Jim Frimmel (of LC noteriety) comes a suggestion of how to
accomplish this wondrous feat. You can set up your own "pass" counter and
conditionalize your *GET of the EQUate file. The following code does this:

PASS DEFL PASS+l1

IF PASS.EQ.1
*GET MYEQU

ENDIF

The value of any undefined symbol is zero. Therefore, the first time this
code is executed, the symbol PASS is set to a value of one and the *GET
statement is assembled causing the EQUate file to be included. Subsequent
passes set PASS to two and three respectively. Thus, the conditional is FALSE
for all but the first pass. This, by the way, is another use for the DEFL
pseudo-0P. If you wuse this procedure, you will lose the use of IFDEF and
IFNDEF conditional pseudo-OPs for any symbol defined in the EQUate file. Now
you ask why can't I use this on MACRO files (obviously after trying to no
avail)? EDAS 4.1 has a few conditionals (IFDEF, IFNDEF, and IFREF) that
require some hairy and elegant implementation. They make use of flag bits
that indicate DEFINITION and REFERENCE on each pass of the assembler. EDAS
restricts the redefinition of MACROS and makes use of these flag bits. If a
MACRO file was only loaded once, the MACRO would show up as being undefined
on subsequent passes because the DEFINITION bit needs to be set during each
pass to define the macro.

PDS VERSION 1.8

PDS has been around since December 1981, It adds some interesting and
useful capabilities to LDOS versions 5.0 and 5.1. PDS stands for Partitioned
Data Set and permits the bundling together of executable CMD files into one
file - each individual file now termed a member of the PDS. PDS stores the
members adjacent to each other and keeps a directory in the front of the one
file. This winds up saving disk space as there is no need to maintain granule
boundaries for each member. Small utility programs can sometimes take up only
a few sectors of disk space. The average file will always waste a few sectors
due to allocation 1in granule units (a granule 1is a contiguous quantity of
sectors on a track - the quantity varies with the size and density of the
disk). We have had reports of up to 25% reduction in storage requirements
when maximum use is made of PDS-type files. Remember, PDS can also store data
members that are accessible from PDS utilities.

ISSUE'1 - 8

NOTES FROM MISOSYS

PDS does its thing without using any high-memory space. It uses what we
consider to be a very elegant process to accomplish its functions. When you
BUILD a new partitioned data set, PDS adds a small program, termed the front
end loader, to the beginning of the file during the initialization process. A
member and ISAM directory immediately follow this loader. The loader executes
from X'52@@' to X'52E1l' - quite short. The loader makes use of a little known
fact that when a program executes, the file control block used to access the
program file is left in an OPEN state wupon transferring control to the
program (in this case the 1loader). The front end loader then parses the
command line looking for a member specification. Finding one, it continues to
read the program file as if it were data. It is thus reading the member
directory. After it finds the member entry, it extracts appropriate loading
information and interfaces back to the LDOS loader - which continues to load
and execute the member requested. This 1is the reason that you cannot have
DEBUG active during the execution of a un-protected PDS file - DEBUG would
load after the front end loader and alter the FCB that the front end Toader
would need to access the directory. Although PDS itself is copyrighted, you
may freely disemminate your own partitioned data sets that are created using
PDS and have only this loader (plus your own members, of course).

Since its release, PDS has had surprisingly few bugs. Herewith are a few
patches that correct known problems.

. PATCH TO PDS/CMD.PDS

. NOTE: This patch was applied quite some time ago

. and is most likely in your copy. Check with
the LIST command to ensure your PDS is patched.
Patch corrects PDS(COPY) of members less than
one sector in length.

DGD BC=11 EB 55 (8; WAS C8 11 EB 55

. End of patch

This next patch is a new one and corrects a problem of PDS(APPEND) when the
file you are trying to append is a null file. This occurrence is obviously
one where you would not want to append; however, you may inadvertantly try to
append a null file and we surely would not want PDS(APPEND) to try to append
it. Since this is an X-patch, you will have to patch PDS by first copying
APPEND to workspace, patching the separate file, killing and purging the
APPEND in the PDS, then appending the patched copy back to the PDS. Do this
with a BACKUP copy of PDS. This is detailed as follows:

1. BUILD the PDSA/FIX file with:

. PDSA/FIX - PATCH TO THE APPEND MEMBER OF PDS

X'5499'=CD 3D 59

X'593D'=11 8A 58 2A A5 54 AF ED 42 CP 21 4D 59 C3 2E 56
@A 41 70 70 65 6E 64 69 6E 67 20 66 69 6C 65 20
69 73 20 6E 75 6C 6C 21 @D

. End of patch

2. Execute the command, "PDS(A) PDS(APPEND) APPEND"

3. Execute the command, "PATCH APPEND PDSA"

4, Execute the command, "PDS(K) PDS.PDS(APPEND)"

ISSUE1 - 9

NOTES FROM MISOSYS

5. Execute the command, "PDS(P) PDS.PDS"
6. Execute the command, "!APPEND APPEND PDS.PDS"

Note specifically the exclamation point in step 6 - it 1is required! You now
have corrected the PDS(APPEND) member.

A question frequently asked concerning PDS is the use of the MAP
parameter. First let's explain what MAP is all about and why it 1is here in
the first place. When PDS was being designed, one projected use of it was to
store the libraries provided by LC - our C compiler. We had a distinct need
to be able to load one member but provide more than one entry point to that
member. This correlates to similar functions in the LIBrary modules of LDOS.
For example, the COPY command and the APPEND command of LDOS both execute
from the same member of SYS6. COPY and APPEND are two different entry points.
The method of specifying multiple entry points to a single member is provided
via the MAP option. Rarely will a user want to store a CMD file that has
multiple entry points as a member of a PDS. Therefore, we weren't too
specific concerning the exact syntax to use for this process - although the
PDS documentation does show what a MAP entry should look Tlike.

For a multiple entry member, there is only one object file to load yet
each entry requires a name and an entry point. Thus, the syntax of a MAP
record looks like this:

filespec,memberl,traadrl,member2,traadr2,...

The first field specififes the name of the file that is to be loaded.
"Memberl" and “traadrl" is the first member name and its entry point.
Subsequent fields identify each member name (another entry to filespec) and
the respective entry point. For example, suppose you had a file called,
COPY/CMD, which contained two entry points: APPEND at X'528@' and COPY at
X'52@83'. The MAP record to append such a file would be:

COPY ,APPEND,5208,COPY , 5200

If you are using the PDS file to store assembler libraries and you have
multiple entry points to an assembler source code member, what do you do
about the transfer address? There is no such thing for the source! Well,
since the syntax requires a transfer address, we must enter something;
however, it matters not what we enter - a zero will suffice.

While we are talking about libraries, our PDS users have questioned us
on the reference in the documentation to using CMDFILE to extract LIBrary
commands from SYS6 and SYS7 and append them into a PDS. This was mentioned to
have user-constructed libraries. Unfortunately, we never really told you
exactly how to do this feat. The LDOS manual mentions that CMDFILE recognizes
the LIBrary files, SYS6 and SYS7, and can read in each member individually.
Some time ago, Earle Robinson (of SoftERware) had written an article on
extracting the individual LIBrary members. Exactly what happened to that
;n{ormation is unknown. In case you never saw it, let me bring you up to

ate.

ISSUE 1 - 10

NOTES FROM MISOSYS

If you execute a LIB command, you will see LIB <A> and LIB commands
displayed. LDOS 6.x users will also see LIB <C>. The names of each command
represent the entries to members in SYS6 and SYS7 (also SYS8 for LDOS 6.x LIB
<C>) respectively. The command interpreter which resides in SYS1 compares
your command entry to a table which contains ISAM codes for each LDOS LIBrary
command. It is these codes that are needed 1in CMDFILE to extract one of the
LIBrary members. Rather than have you waste the time to search SYS1/SYS and
decode the table, here is a list of the codes:

SYS6-LIBA SYS6-LIBA SYS7-LIBB SYS7-LIBB SYS8-LIBC
31-APPEND 41-LIST 51-ATTRIB 72-PURGE B1-FORMS
32-COPY 81-LOAD 11-AUTO Al1-SYSTEM B2-SETCOM
61-DEVICE 1E-MEMORY 33-BUILD 16-TIME B3-SETKI

21-DIR 53-RENAME 17-CLOCK 1A-TRACE A2-SP0OOL
91-D0 63-RESET 13-CREATE 1B-VERIFY

66-FILTER 64-ROUTE 15-DATE

18-KILL* 82-RUN 14-DEBUG

19-L1B 65-SET 71-DUMP

62-LINK A2-SPOOL 22-FREE
* | DOS 6.9 command name is "REMOVE"

What more can you do with PDS? MISOSYS generally has imaginative users.
When it comes to PDS, the most imaginative has been Scott Loomer of
MicroConsultants West. Scott has put together a package he calls "PDS Tutor"
which not only presents a handful of non-typical Uses, it also provides a
technical treatise on the directory structure maintained by PDS. If you are
interested in some unusual uses for PDS, get in touch with Scott at 315
Palomino Lane, Madison WI 537@5.

Incidentally, the April 1, 1982 issue of THE LDOS QUARTERLY had a piece
on the various types of records in load modules. This information was in
Roy's Technical Corner. It documented the Tload records in a PDS as well as
the others typically used in LDOS.

ZGRAPH VERSION 4.9

The ZGRAPH package has been pretty solid. One minute bug crept in to the
BINCONV/BAS program, though. Under certain conditions, the EDAS-compatible
output file would be constructed wrong. It is necessary to correct four BASIC
statements: lines 565, 61@, 78@, and 91@. The lines should read as follows:

565FORT1=1T016:T2=T@*16+T1: IFT2>LEN(AS$)THENPRINT#2,CHR$(13); :GOTO57@EL
SEPRINT#2,FNSS$ (ASC(MID$ (A$,T2,1))); :GOSUB61@:NEXTTL:PRINT#2,CHR$(13);
:IFT2<LEN(A$)THENGOSUB6@@: TP=TP+1:G0T0565
61QIFT1<16ANDT2<LEN(A$)THENPRINT#2,","; :RETURN:ELSERETURN
78@FORT1=1T016:T2=T@*16+T1: IFT2>LEN(A$)THENPRINT#2,CHR$(13); :G0TO79PEL
SEPRINT#2,FNSS$ (ASC(MID$ (A$,T2,1))); :GOSUBIL@: NEXTTL:PRINT#2,CHR$ (13);
:IFT2<LEN(A$)THENGOSUB9@@: TP=TP+1:GOTO780
91@IFT1<16ANDT2<LEN(A$)THENPRINT#2,","; :RETURN:ELSERETURN

ISSUE 1 - 11

NOTES FROM MISOSYS

GRASP, by its nature of providing a special graphics printer driver,
must interface directly to the printer port. This may be a problem if the
machine you are using does not exactly correspond to the peripheral
interfaces of the Model I or III. Such is the case with two machines - the
Video Genie by EACA and the MAX-8@ by Lobo Drives. The Video Genie is a Model
I work-alike; however, instead of interfacing the printer through a
memory-mapped address of X'37E8', the Video Genie uses a Z-8@ port, X'FD'. On
the other hand, the MAX-8 1is a Model III work-alike under LDOS but uses
memory-mapped address X'37E8' whereas its Model III counterpart uses port
X'F8'. Why oh why do these "work-alikes" not work alike! Herewith are patches
to ALTCHAR/DVR and ALTCHAR/CMD:

. PATCH FOR ALTCHAR/DVR FOR VIDEO GENIE
0@5,5F=D3 5D @@; WAS 32 E8 37

DP8,@F=DB FD @@; WAS 3A E8 37

. End of patch

. PATCH FOR ALTCHAR/CMD FOR VIDEO GENIE
DPP,35=D3; WAS 32

D@@,38=FD; WAS E8

D@@,38=0@; WAS 37

D@2,C2=DB FD @P; WAS 3A E8 37

. End of patch

. PATCH FOR ALTCHAR/DVR FOR MAX-80
D@8,19=32 E8 37; WAS D3 F8 99
. End of patch

. PATCH FOR ALTCHAR/CMD FOR MAX-8@
D@2,CC=32 E8 37; WAS D3 F8 @9
. End of patch

For the purists out there, there is a minor correctable problem with
GPD/DVR. When the driver is installed, it does not initialize the first byte
of the Device Control Block. If GPD was applied to the *PR device, then there
was never a problem since the TYPE byte would already be properly
established. The following patch forces the TYPE byte to an X'0#6' in all
cases.

. Patch to correct GPD/DVR version 5.la to cause GPD

. to set the DCB type byte when installed on devices

. other than *PR. Use this patch only with GPD 5.1a.

. After patching, version number becomes 5.1b.

. New driver installed starting with #400@82.

DB@,21=22 PC 53 11 PA 53 PP @P@; WAS 7D 32 @C 53 7C 32 @D 53
D@@,30=C3 4E 52; WAS 23 DD E1

D@@,4B=22 D1 52 11 CF 52 @@ @@; WAS 7D 32 D1 52 7C 32 D2 52
D@P,65=DD 36 @@ P6 C3 32 52; WAS 21 CF 52 ED B@ FB C3
D@P,94="b, 12 April 1983"; WAS "a, 22 April 1982"

. End of Patch

ISSUE 1 - 12

NOTES FROM MISOSYS

Incidentally, the GPD driver module used on the Model III interfaces to
the ROM which access the printer via port X'F8'. Therefore, GPD is unusable
on the MAX-8@#. This should not present a problem for MAX users as the
standard LDOS printer driver should be adequate for graphics use.

One thing that we had expected with GRASP was to find our users
submitting character sets. It is known that some excellent character sets
have been developed. Witness the review in 8@ Microcomputing and the Hebrew
and Greek character sets done by Charlie Knight. Also, some users local to
the MISOSYS area have showed some interesting graphic results created from
customized characters using GRASP. Well, here's the pitch. If you have
developed an interesting and useful character set for use with GRASP, send us
a copy to combine into a diskette of fonts. We will then make the fonts
available to all our GRASP users.

SOLE - MODEL I DDEN BOOTING

SOLE has been without problems since its inception [assuming that the
instructions were followed exactly]. Since SOLE was written prior to Tandy
introducing their Model 1 double density controller adaptor, the original
SOLE could not support Tandy's DDEN [if the controller handshaking was
different from the other manufacturers]. Since the release of SOLE, we had
developed a SOLE patch to support Tandy's controller. This patch was provided
with the SOLE shipments starting July 28, 1982. 1If., you have received SOLE
prior to this date, then you need the patch. The patch is to be applied to
SOLE2/CMD prior to using SOLE2. Patch is as follows:

. SOLE2RS/FIX - @§7/28/82 - By Roy Soltoff

. This fix modifies SOLE2 to work with the Radio Shack
. double density adaptor modification.

. Apply with the command: PATCH SOLE2 SOLE2RS
D@4,CC=PF EE AP 32 EE 37 C9 99 00 00 09 00 09

. WAS @7 @7 F6 FE 32 EC 37 3E D@ 32 EC 37 C9

. End of patch

We have come across one problem with the installation of SOLE that
merits discussion. Step 7 of the SOLE implementation instructions states
that, "You can place the diskette in the drive of your choice - it doesn't
have to be drive @". This is in reference to the becoting diskette just prior
to running the SOLE2 program. SOLE2 can do its job on the booting disk in
other than drive §. However, a slight snag develops if drive @ is a slow
stepping drive and the diskette 1is placed in a fast stepping drive for the
SOLE2 process. SOLEZ2 installs a double density driver onto the boot track of
the booting diskette. In doing so, it copies most of the Drive Code Table
(DCT) data for the requested drive and will use this data for booting.
Therefore, if the drive was set for 12ms or 6ms step rates but your zero
drive can only handle 2@ms, the disk will not boot. The documentation should
have stated that you can place the disk in the drive of your choice PROVIDED
IT IS SIMILAR TO DRIVE @ IN STEP RATE.

ISSUE 1 - 13

NOTES FROM MISOSYS

CONB@Z - 8@8@ TO 8@ TRANSLATOR

The early shipments of CON8@Z did not have a patch applied that is
needed to correct the translation of the JMP and JP instructions. Please
check your disks and apply the following patch as necessary.

. PATCH TO CON8@Z/CMD VERSION 1.9
D@7 ,A4=04; WAS @3

D@7,B4=0C @2; WAS 99 @5
D@3,8C=C3; WAS E2

D@4,70=09; WAS C9

. End of patch

You should also be aware that CON8@Z is now priced at $4@. If you do
substantial 8083 programming, or have access to the CP/M public domain
library with extensive 8#8@ source code, you may want to explore CONSQ@Z.

CONVCPM - CONVERT FILES FROM CP/M

This utility is used to transfer files from selected CP/M media to LDOS
media. The program handles standard 8" single density diskettes and 5-1/4"
diskettes formatted 128-byte sectors with 18 sectors per track. The current
version of CONVCPM s 1.3. This version was released starting with serial
number 2@. If you have an earlier version, you may want to return it for an
update. There will be al$5 handling charge.

A CONVCPM user in England requested information on modifying CONVCPM to
handle 5-1/4" media that was formatted 16-single density 128-byte sectors per
track. Others may be interested in the patch. It is as follows:

. PATCH TO CONVCPM VERSION 1.3 TO USE 16 SPT.
D@P,EP=10; WAS 12 (# of bytes in TRANSLATE table)
D@1,00=27 1¢; WAS 28 12 (DCT Bytes 8 & 7)

. End of patch

With the availability of CP/M on the MAX-84 and obvious CP/M
installations for the Model 4, we may consider writing a version of CONVCPM
to handle 5-1/4" 256-byte sectors - both single and double density. The
stumbling block to this job 1is the non-standard CP/M media. If you have
access to documentation specifying the exact configuration of such media, we
would appreciate forwarding us a copy. What is needed is the OEM name,
diskette format, sector numbering, sector translation table, and the length
of the directory. Also, any deviation from standard directory data is
important. Address such data to MISOSYS, c/o Software Development.

MSP@1 - PARMDIR - DOCONFIG - DOAUTO - MEMDIR

If you didn't notice in THE BLURB, the price of MSPPl has been lowered
by $1@ effective March 1. This may now be the time to 1look into this very
interesting package. DOCONFIG provides some interesting capabilities. Many

ISSUE 1 - 14

NOTES FROM MISOSYS

LDOS wusers have been attracted to the concept of configuring a system
diskette. Because of that growing popularity, more users note that in order
to change an existing configuration, you either have to issue RESET commands
or re-BOOT the system while holding the CLEAR key (to inhibit the CONFIG/SYS
file). Now issuing RESET commands 1is not always the greatest as not every
high-memory module will be able to re-establish itself in the same spot.
Therefore, upper memory is wasted.

It sure would be nice to be able to establish a configuration and change
to another easily. Les Mikesell came up with a program called SYSGEN/CMD that
could do just that. There were limitations to what SYSGEN/CMD could do. One
of our customers wanted to be able to re-configure while running Job Control
Language. SYSGEN couldn't do that. Another wanted to set up a JCL file to
establish a particular configuration then "SYSGEN" it for later use without
having to exit the JCL procedure. SYSGEN couldn't do that either. To satisfy
these needs, we put together the DOCONFIG program. DOCONFIG is unique in that
it provides these two functions. You can save or restore a configuration
while within a JCL execution. DOCONFIG also interfaces to the LDOS "SYSTEM
(SYSGEN)" module in SYS7/SYS so that any change to the data tables there will
automatically be part of DOCONFIG. DOCONFIG also provides for saving the
state of an LBASIC program execution while the program is executing so that
it may be re-established at some future time.

PARMDIR 1is a very sophisticated data base program that uses the on-line
directories as a data base. It was originally designed to generate JCL files
based on directory interogatories. For instance, a massive RENAME of all /TXT
files to /SCR could be easily established.via JCL with one PARMDIR request
without having to enter a myriad of "RENAME filespecl to filespec2" commands.
Here is an interesting PARMDIR command:

PARMDIR /asm:3 genasm:@ (a="1 ",x=";a $nam:2-nl;dt,b"

which is used to construct a JCL file to assemble all /ASM files resident on
drive 3. A1l that is needed is to add the statement, "edas (jcl,abort)" to
the resulting file. What that strange command 1line does is select all files
on drive 3 with an extension of "ASM". It then outputs records to the file,
GENASM/JCL:@. Each selected file generates three records: the first is "1
filename/asm:3", the second is "a filenam:2-n1", while the third is "dt,b".
Three records are output because of the semi-colons in the command statement.
Other complex examples are at your fingertips.

PARMDIR had one problem reported to us where the drive being referenced
was drive 7. Obviously, the bug would show up only by a hard-drive user (why
didn't we catch that one?). In case you need to reference drive 7, apply the
following patch (apply it even if you don't need to access drive 7).

. PARMDIRI/FIX - @§3/91/83

. This patch permits PARMDIR to address drive 7.

. A limitation is that files designated SYS in

. the directory of drive 7 will not be classed
as SYS files.

. Applied #3/91/83 - Starting 230@61

X'5535'=CD B2 61; Call the patch

X*'61B2'=@F B@ 77 3C CP CB A6 C9

. End of patch

ISSUE 1 - 15

NOTES FROM MISOSYS

CONTRIBUTIONS

We will attempt to make "NOTES FROM MISOSYS" more than just a
presentation of patches. Our goal is to make it "newsy" and stock it with
"freebies" - useful programs for our readers. What follows is a boldface
filter for use with the Radio Shack DMP series of printers. We ripped the
guts from our Daisy Wheel boldface filter andd rewrote what remained to deal
with the boldface handshaking of our relatively new DMP-5@@ (27 31 to enable
boldface, 27 32 to disable boldface). The filter has two distinct toggle
characters used to alternate the boldface condition. If either toggle
character is detected when bolding is off, it turns it on. If on, receipt of
a toggle character turns off the bolding. A tilde () is used to toggle and
output a space in lieu of the toggle character. This permits its wuse in
LSCRIPT text while still permitting right Jjustification. The other toggle
character is X'7F' entered by depressing <CLEAR><SHIFT><ENTER> (with the LDOS
KI driver). A command such as:

filter *pr dmpbold (t="%*,n=x'le’)

changes the toggle-with-space to a per cent sign and the toggle-with-nil to
an X'le'. The filter follows in HEX format and can be converted to an FLT
file by using BINHEX/CMD.

05 @6 44 4D 5@ 42 4F 4C 1F 1D 43 6F 7¢ 79 72 69 67 68 74 2¢ 28
43 29 26 31 39 38 32 29 62 79 2@ 4D 49 53 4F 53 59 53 @1 92 9@
52 D5 1A F5 E5 21 CB 52 CD 67 44 3A 25 @1 FE 49 20 18 21 11 44
22 6D 52 22 9C 52 22 A8 52 21 8A 42 22 C6 52 21 54 44 22 2E 52
E1 11 5D 53 CD 76 44 C2 C2 52 F1 CB 5F C2 B6 52 CB 67 C2 BE 52
CB 4F CA BA 52 DD E1 DD 6E @1 DD 66 @2 22 8D 53 21 7E @@ 24 25
7E 20 @1 7D 32 97 53 32 C6 53 21 7F @9 24 25 7E 29 @1 7D 32 9B
53 32 CA 53 2A 49 49 22 8@ 53 DD E5 DD 21 D8 53 11 D7 53 B7 ED
52 44 4D 3E 95 DD 6E PP DD 66 @1 5E 23 56 EB @9 EB 72 2B 73 DD
23 DD 23 3D 2¢ EA DD E1 ED 58 49 4¢ 21 D7 53 @1 5A @@ ED B8 ED
53 49 4¢ 13 F3 DD 73 @1 DD 72 @2 FB C3 2D 4@ 21 22 53 DD 21 35
53 DD 21 4B 53 DD 21 11 53 CD 7B 44 C3 3@ 49 44 4D 5¢ 2D 35 3¢
3¢ 20 42 4F 4C 44 46 41 43 45 20 46 69 6C 74 65 72 20 2D 2@ 56
65 72 73 69 6F 6E 24 31 2E 30 PA 43 6F 7@ 79 72 69 67 68 74 20
31 39 38 33 2C @1 E4 PP 53 20 62 79 29 52 6F 79 2@ 53 6F 6C 74
6F 66 66 @A @D 5@ 61 72 61 6D 65 74 65 72 20 65 72 72 6F 72 21
gD 44 65 76 69 63 65 2 6E 6F 74 2§ 61 63 74 69 76 65 21 @D 4E
6F 74 20 61 6E 20 6F 75 74 70 75 74 2@ 64 65 76 69 63 65 21 @D
44 65 76 69 63 65 2¢ 69 73 20 72 6F 75 74 65 64 21 @D 54 4F 47
47 4C 45 4F 52 54 29 2¢ 20 2§ 2@ 4F 52 4E 55 4C 4C 29 28 5E 52
4E 20 20 20 20 20 5E 52 @@ 18 PA PP 99 07 44 4D 5@ 42 4F 4C 44
28 @3 C3 PP @9 F5 3E @@ B7 2¢ 2F 79 FE 7E 28 23 FE 7F 28 93 Fl
18 EB E1 @F 1F 18 @4 E1 AF PE 29 32 91 53 C5 @E 1B BF CD 8C 53
Cl BF 18 D4 CD A7 53 18 @3 CD A2 53 @E 2@ 18 DA 79 FE 7E 28 EF
FE 7F 28 D9 FE @D 2@ CD CD A7 53 @E @D 18 C6 AB 53 B2 53 B9 53
BE 53 D2 53 92 §2 9@ 52

*CE

ISSUE 1 - 16

NOTES FROM MISOSYS

LC - C-LANGUAGE COMPILER

LC has been a big hit with our users. Just about everything being fed
back from our users to date has been positive. A couple of points are worth
mentioning here. Some users may be having trouble obtaining a copy of THE C
PROGRAMMING LANGUAGE by Kernighan and Ritchie. Due to the growing popularity
of the C language, Prentice Hall has been working hard keeping that book in
print. Besides that, they raised the price last November. We keep a small
supply of this publication in stock to satisfy our retail customers. We sell
K&R retail for $18 plus $1 shipping.

Another point that needs mentioning is the tremendous job being done by
Earl Terwilliger, Jr. with the LC Interest Group (LCIG). If you are an LC
user and have not been in contact with Earl, you are surely missing out on
some good stuff. The LCIG already has a handful of diskettes containing C
programs in source code. These are all compatible with LC and are public
domain - all that's necessary 1is to Jjoin the LCIG. Contact Earl C.
Terwilliger, Jr., 647 North Hawkins Ave., Akron OH 44313.

LC was released in October of 1982. Since that time we have uncovered
some bugs while our users have advised us on some others. In spite of these
"minor" mishaps, we are very pleased with the quality of the package. LC
constitutes a complete 35-track single density diskette. That's almost 85K of
code. EDAS 4.1, which is included with the package, constitutes more code on
another diskette. The LC/EDAS development system is a monumental work and we
are proud of all those that have had a part in LC's birth. Jim Frimmel, the
author of LC, has been busy researching reports of problems with the compiler
or libraries. Jim is readying an update which will be provided FREE to our LC
users. We hope to complete the testing of version 1.1 by the early part of
May for shipment in mid-May. Therefore, you may want to start sending your
master LC disk in a protective mailer to us. DO NOT RETURN THE EDAS DISKETTE
(unless you want us to apply the EDAS4 patches at a charge to you of $5). We
will regenerate your master diskette and return it to you in the mailer you
use to send it to us. Please address the mailer to: MISOSYS, Attn: LC Update,
PO Box 4848, Alexandria VA 223(3-0848.

While the LC diskettes are being exchanged, you may want to ascertain
the need of applying patches in the interim. We have installed a few patches
to the LC diskette since its release. There is at least one additional patch
that you may want to install. Confirm whether the following patches have been
applied to your diskette and patch accordingly.

. LC1/FIX - 1@/$9/82 - PATCH TO LC/LIB.LC

. This patch corrects a problem in FCLOSE. It was
. added to serial # 920069 and from 920079 on.
D3F,67=42 43; WAS 48 4C

D3F,76=42 43; WAS 48 4C

. End of patch

Another change made on 10/15/82, was to correct the "#option ZVAR". This
is correctable by changing the "$VAR" macro located in LCMACS/ASM to read as
follows:

$VAR MACRO #NAME,#SIZE

ISSUE 1 - 17

NOTES FROM MISOSYS

$SORG

#NAME EQU $$STEMP
IF @ ZVAR
0c #5IZE,@
ELSE
DS #SIZE
ENDIF
$PORG
ENDM

Also change the first line of the file to read "; 1¢/15/82".

There also was a patch applied to the compiler, LC/CMD, on 12/18/82
starting with serial # 92¢218. If your LC is a prior number, you may want to
apply the following patch:

. PATCH T0 LC/CMD.LC TO FIX VARIOUS PROBLEMS.

. APPLIED 12/18/82 STARTING FROM 92@218.

. PATCH TO CORRECT EOF DETECTION.

D2C,@2=FF FF; WAS 84 @E

. PATCH TO CORRECT FUNCTION RETURNING A POINTER VALUE
D5@,EB=BC; WAS (B

. PATCH TO CORRECT ALLOCATION OF LOCAL POINTER ARRAYS
DBE, 8A=p@; WAS 81

. End of patch

Now that the patches are out of the way, let's examine what else iis
locally correctable while. you are awaiting the update. Three functions were
inadvertantly omitted from the floating point library. These are FINT, FLOG,
and FSGN. You may easily add them to any program that needs them by adding
the following code to the LC/ASM file. Insert this code just before the "IF
@ FPLIB" statement.

IFREF FINT
FINT LD HL,@B37H

Jp OFNF

ENDIF

IFREF FLOG
FLoG LD HL,809H

JpP @FNF

ENDIF

IFREF FSGN
FSGN CALL @SvsS

#GA HL

CALL 9BI1H

CALL @AEFH

CALL 98AH

LD HL, (4121H)

RET

ENDIF

While we are talking about the Floating Point library, one other problem came
to light recently. It seems that the use of FFIX causes the resulting
application to crash - a most undesirable feature. No, we did not plan it
that way. You can correct this malady by applying the following patch to

ISSUE 1 - 18

NOTES FROM MISOSYS

FP/LIB.LC.

. PATCH TO FP/LIB.LC TO CORRECT FFIX.

D@5,2B=4C 44 @9 48 4C 2C 3@ 42 32 36 48 9D @9 4A 50 #9 49 46 4E 46 @D
CWAS 43 41 4C 4C 9 3@ 42 32 36 48 @D B9 4A 50 9 40 46 4E 46 9D 1A
. End of patch

We must have had a problem in generating a small batch of LC disks.
There were a few returned for problems - all in a small range of serial
number 92@249. If you are having some extreme problems (like reboots and
crashes when trying to run LC) and thought that it was your C program, it may
be a bad diskette. If your serial number is close to 926249 and you have
severe problems with LC, hold on until receiving the update.

Before we go any further in identifying the additional problems reported
to us that will be fixed in the update, let's turn to some examples of LC
programming. The first is a good illustration of the Shell sort. The sort
routine is essentially straight from K&R (page 58). However, what is sorted
and the method of display 1is the useful part of the illustration. The
SEESHELL program generates 1@24 random displayable characters in video RAM.
It then proceeds to sort them directly in video RAM so that you can observe
the status of the sort by eyesight.

/* seeshell/ccc by Roy Soltoff */

#include stdio/csh

#option args OFF

#option redirect OFF . -«
#option maxfiles @

#option fplib

main()
{
char *v, v1[4]1, v2[4];
int i,n,c;
v = Px3chd; /* set to CRT area */
n = 64*16; /* set to CRT size */
cls();
itof(94,v2); /* set random upper */
for (i=@; i<1@24; ++i)
{
frnd(vl,v2); /* get random number */
y = ftoi(vl) + 32; / set char 32-126 */
+Hy; /* bump pointer to next loc */
}
shell(@x3cP@,n);
c=getchar();
cls();
exit(@);
}
shell(v,n) /* sort v[@1...v[n-1] */
char v[1;
int n;

{
int gap, i, j, temp;
for (gap=n/2; gap > @; gap /=2)
for (i=gap; i<n; i++)

ISSUE 1 - 19

NOTES FROM MISOSYS

for (j=i-gap; j>=@ & v[jDv[j+gapl; j-=gap)
{

temp=v[jl;
vljl=vlj+gap]l;
v[j+gapJ=temp;
}

}
cls()
{ puts("\xlc\x1f*); }

We have gotten a few questions concerning the use of the Floating Point
library. It is understandable! Although the manual describes the method of
interfacing, the lack of examples is clearly a drawback. The first example in
K& coincidentally happens to be a problem requiring floating point. If you
are new to C, you probably just bypassed that problem and continued on. There
is really a great deal that can be done in integer arithmetic. The use of
floating point as interfaced in LC does not necessitate a great deal of time;
however, a few examples will obviously help you over the hurdle. The
following is presented as one example of the Fahrenheit to Celsius program
described on page 8 of K&R but written using the FP library in LC.

/* fctab - print Fahrenheit-Celsius table
for f =0, 20, ..., 300 */

#include stdio/csh

#option fplib

main()

{
int lower, upper, step, fahr;
char celsius[4], fivedivnine[4], temp[4];
char thirtytwo[4], celsius_str[81;
Tower = @; /* lower limit of temperature table */
upper = 3@@; /* upper limit */

/ step = 20; /* step size */
calculate 5.8/9.9

*/

atof("5.8",fivedivnine); /* float 5 */

atof("9.9",temp); /* float 9 */

atof("32.@",thirtytwo); /* float 32.9 */

fdiv(fivedivnine,temp); /* calc 5.9/9.9 */
/* */

fahr = lower;

while (fahr <= upper)

{
itof (fahr,celsius); /* float fahr */
fsub(celsius,thirtytwo); /* fahr - 32.0 */
fmul(celsius,fivedivnine); /* (5.0/9/0)*(fahr-32.9) */
ftoa(celsius,celsius_str); /* result to ASCII */
printf("%-6.3d %-8.8s\n",fahr,celsius_str);
fahr += step;

}

}

Aside from setting up the floating point arithmetic as functions, we chose to
take the division of 5.8 by 9.8 out of the scope of the "while" loop. If

ISSUE 1 - 20

NOTES FROM MISOSYS

"5.8/9.9" is kept within the scope of the while Tloop, the result will be
slower execution time as the calculation is performed repeatedly (it is
possible that an optimizing compiler would recognize the calculation to be a
constant - perform it once then use the stored value).

ATTENTION LC USERS

The following are problems brought to our attention that have already
been corrected by the preceding patches and changes or that will be remedied
in release 1.1. IF YOU ARE AWARE OF ANY OTHER BUG, PLEASE CONTACT MISOSYS
IMMEDIATELY:

1. Problem with fclose() most visible when trying to run the CAT/CCC demo
program while concatenating two or more files.

2. The #option ZVAR did not work as specified.

3. The compiler could not detect the end of a /CCC source file unless the
file was terminated with an X'1A'. This would present difficulties when using
LED or LSCRIPT to prepare source files.

4. A function that returned a pointer value would not return the correct
value.

5. Local pointer arrays would not have proper space allocated.
6. The function, fint(vl,v2), was omitted -from FP/LIB.“

7. The function, flog(vl,v2), was omitted from FP/LIB.

8. The function, fsgn(vl,v2), was omitted from FP/LIB.

9. The function, ffix(vl,v2), improperly executed.

1. The atoi() function does not accept a leading plus sign prefixed to the
integer string.

11. A memory block allocated with alloc() larger than 32,767 bytes would be
incorrectly allocated, and could result in a bad crash if free() and alloc()
are alternately called after allocation of a large block.

12. Comparisons of the form "(-32768 < 32767)" are improperly calculated.

13. The fprintf() and printf() functions can't handle the value, -32768.
fprintf() and printf() would also not print correct values for hexadecimal
numbers over 8@@@H.

14, Problem with switch-case when multiple "case" statements appear on a
line. Also, a case statement had to be the first statement within a switch
statement body, or the result of the switch expression would be Tlost. The
value is now retained even if a case is not the first statement. Furthermore,
the "default" was required to be placed as the 1last part of the
switch-case-default construct. This requirement will be eliminated

ISSUE 1 - 21

NOTES FROM MISOSYS

5. The fgets() function is removing the newline character (X'@D') from the
terminal end of the string contrary to K&R page 155.

16. Catastrophe exists if you specify both “#option FIXBUFS" and “"#option
MAXFILES @".

17. An expression such as:
*(ptr=ADDRESS) = @;

where ptr is a character pointer, resulted in a byte being stored, instead of
a character.

18. Static functions were not allowed to have arguments. When the declaration
of the arguments was encountered, LC would produce the message, "“unmatched
arguments”.

19. The function, cursor() uses arguments reversed from the order specified
in the LC manual on page 4-34 and B-1. The x,y values shown on page 4-35 are
correct. The proper funtion invocation is: cursor(col,row);. Please correct
your documentation.

2¢0. A pointer expression with the indirection operator outside of
parentheses, such as this:

val = *(pfunc(x)+3);
would sometimes result in an extra call to @gint, resulting in a wrong value.

21. LC would generate a signed comparison when comparing two pointer
expressions in certain cases.

22. The fopen() function would open an additional file beyond that specified
in the MAXFILES option when #option FIXBUFS ON was specified. If the
additional file was opened, a crash would result.

23. LC would abort without any error message at all if there was an error in
opening LC standard I/0 files (usually due to a large amount of high memory
usage). It will now generate an error message.

24, The fgets() and gets() functions would Tlose one character if the maximum
line size was reached in an input.

25. If you specified #option NOREDIRECT, LC also suppressed ARGS.

26. LC did not permit the reuse of an existing variable name within a new
block (routine within braces). This was not considered to be a bug but an LC
lTimitation. This restriction will be removed.

26. Finally, LC does not generate an X'lA' character in its output /ASM file.

We have had requests from LC users as to its speed compared to other
compilers and languages. This is a tough question to answer. At best, we turn
to a standard test program used in the industry and attempt to correlate the

ISSUE 1 - 22

NOTES FROM MISOSYS

results. A most often used test program is the classic, Sieve of
Eratosthenes. This algorithm locates the prime numbers from one to some upper
limit by elimination of multiples of prime values from a sequential Tlist.
This example is especially useful in light of an extensive test of the sieve
processed under many compilers, languages, operating systems, and computers
and discussed in a recent article appearing in BYTE magazine ["Eratosthenes
Revisited - Once More Through the Sieve" by Jim Gilbreath and Gary Gilbreath,
BYTE, January 1983].

The sieve program written in C was adapted to LC and executed on a
standard Model III running LDOS (with type-ahead active). The execution time
was 106 seconds. This compares to times of 198s (MMSFORTH 1.9 on Model I),
288@s (BASIC on Model III), 478@s (Disk BASIC Model III), 25.4s-53.2s
(various C compilers running under CP/M on 4MHz Z-8@ CPUs). The test program
used for our timing was as follows:

/* Eratosthenes Sieve Prime Number Program in C */
/* Adapted from BYTE January 1983 */
#include stdio/csh
#option REDIRECT OFF
#option FIXBUFS
#option MAXFILES 1
#option INLIB
#define size 8199
char time_of_day[9],f1ags[81911];
main() {
int i,prime,k,count,iter;
time(time of day); /* get start time*/
printf("1¥ iterations starting -> %s\n",time_of day);
for(iter = 1; iter <=1@; iter++) { /*do program 10 times*/
count=@; /*prime counter*/
for(i = @; i <= size; i++) /*set all flags true*/
flags[i] = TRUE;
for(i = @; i <= size; i++) {

"

if(flags[il) { /*found a prime*/
prime = i + i + 3; /*twice index + 3*/
/* printf("\n¥%d",prime);*/
for(k=i+prime; k<=size; k+=prime)
flags[k] = FALSE; /*ki11 all multiples*/
count++; /*primes found*/
}
}
}
time(time_of_day); /*ending time*/

/*primes found on 1@th pass*/
printf("\n¥d primes ending -> %s.",count,time_of_day);

Programming in C is really quite easy. It is a great language for
writing all sorts of wutility programs. As an example, we had a need to
determine the length of the longest Tline in an assembler source file. This
was needed to run down the problem corrected in EDAS413/FIX. The big question
is not so much how to write it, but what language to use. BASIC would be very
slow and kludgy. Assembler would be fast and a program could be thrown

ISSUE 1 - 23

NOTES FROM MISOSYS

together from piece parts. C was chosen because it would be very easy to do.
Besides, the LC manual already had a program that opened files and read the
character stream. A quick modification of COMPARE/CCC from page D-4 of the LC
manual produced the following program:

/* linelen/ccc */
#include stdio/csh
int line, cl, longest;
FILE *fpl;
main (argc,argv)

int argc, *argv;

{ if (argcl=2) /* program name & file to read*/
{ puts("Format error: Tinelen filel \n");
exit();

line = @; Tlongest = @; /* initialize variables */
fpl = getfile(*++argv); /* get filespec */
while ((cl = getc(fpl)) != EOF) /* until EOF */

{ ++line; /* bump line length */
if (cl == EOL) /* test for longest at EOL */
{ if (line > longest) longest = line;
line = @;
}
printf(“"Longest line is %d",longest);
}
getfile(fname)
char *fname;
{ char *fp;

if ((fp=fopen(fname,"r")) == NULL)

{ printf("Open error - %-2@s\n",fname);
exit();

}

else return fp;

EPILOGUE

MISOSYS will be considering submissions for the next issue of "NOTES
FROM MISOSYS". If you feel you have any item to contribute, please contact
Roy Soltoff. Also, why not let us know what you think of these "notes" as an
information source. The next issue will be published as soon as sufficient
information is garnered.

ISSUE 1 - 24

Published by MISOSYS
P. 0. Box 4848
Alexandria, VA 22393-§848

	doc_20110513072219.pdf
	doc_20110513072222.pdf
	doc_20110513072237.pdf
	doc_20110513072240.pdf
	doc_20110513072253.pdf
	doc_20110513072256.pdf
	doc_20110513072308.pdf
	doc_20110513072312.pdf
	doc_20110513072325.pdf
	doc_20110513072331.pdf
	doc_20110513072344.pdf
	doc_20110513072347.pdf
	doc_20110513072359.pdf
	doc_20110513072402.pdf
	doc_20110513072414.pdf
	doc_20110513072418.pdf
	doc_20110513072431.pdf
	doc_20110513072437.pdf
	doc_20110513072620.pdf
	doc_20110513072630.pdf
	doc_20110513072642.pdf
	doc_20110513072657.pdf
	doc_20110513072712.pdf
	doc_20110513072735.pdf
	doc_20110513072750.pdf
	doc_20110513072807.pdf
	doc_20110513072820.pdf
	doc_20110513072833.pdf
	doc_20110513072850.pdf
	doc_20110513072902.pdf
	doc_20110513072917.pdf
	doc_20110513072930.pdf
	doc_20110513072945.pdf
	doc_20110513072959.pdf
	doc_20110513073014.pdf
	doc_20110513073026.pdf
	doc_20110513073040.pdf
	doc_20110513073052.pdf

